

Detection of silage bags in the Gran Chaco using deep learning and remote sensing

Philip Liehr, Master Thesis

Abstract

Cattle production threatens biodiversity and the functioning of ecosystems in the Gran Chaco. Information from remote sensing on cattle production intensity could guide sustainable land-use planning. In this research, I analysed the potential in deep learning and remote sensing to detect silage bags in the Gran Chaco. I detected silage bags with u-net and random forest. For both algorithms, I compared the accuracy between three sources of image data. The image data came from Sentinel-2, PlanetScope, and a combination of Sentinel-1 and 2. For each source of image data, I also compared the accuracy between u-net and random forest. I measured the accuracy of the detection of silage bags with the intersection-over-union (IoU). U-net with PlanetScope detected silage bags with a high accuracy (IoU=0.86). Random forest with Sentinel-2 and Sentinel-1 and 2 reached a higher accuracy than with PlanetScope. On a separate dataset, u-net and random forest showed a limited suitability for the detection of silage bags. The successful implementation of u-net for the detection of silage bags was limited by missing land-cover elements in the training data and potentially by class imbalance. I could not compare the sources of image data confidently for u-net, due to an instability in the learning of silage bag features. All satellites offer benefits for the detection of silage bags. A sophisticated model training could leverage the full potential of u-net and random forest to detect silage bags accurately on images from Sentinel-2, PlanetScope, and a combination of Sentinel-1 and 2.

Figure 1: Philip Liehr

Figure 1: Philip Liehr